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The nuclear envelope (NE) is a double membrane system consist-
ing of an inner nuclear membrane (INM) and an outer nuclear 
membrane (ONM). Studies in opisthokonts revealed that the 
two membranes are bridged by protein complexes formed by the 
INM Sad1/UNC-84 (SUN) proteins and the ONM Klarsicht/
ANC-1/Syne homology (KASH) proteins.1-3 SUN-KASH com-
plexes have been found from yeast to humans, and they serve as 
linkers of the nucleoskeleton or chromosomes to the cytoskeleton 
(LINC) complexes.4-7 LINC complexes regulate nuclear shape, 
rigidity and position of the nucleus as well as chromatin organi-
zation. The recent identification of a plant NE-bridging complex 
showed that it has plant-specific properties and functions.8 Here 
we will briefly review opisthokont LINC complexes and then 
focus on novel insights on plant NE-bridging proteins.

Opisthokont SUN and KASH Proteins

The founding member of SUN proteins is Caenorhabditis elegans 
UNC-84. The C-terminus of UNC-84 has a domain sharing 
homology with two human proteins and Schizosaccharomyces 
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Linkers of the nucleoskeleton to the cytoskeleton (LINC) 
complexes formed by SUN and KASH proteins are conserved 
eukaryotic protein complexes that bridge the nuclear envelope 
(NE) via protein-protein interactions in the NE lumen. Revealed 
by opisthokont studies, LINC complexes are key players in 
multiple cellular processes, such as nuclear and chromosomal 
positioning and nuclear shape determination, which in turn 
influence the generation of gametes and several aspects of 
development. Although comparable processes have long 
been known in plants, the first plant nuclear envelope bridging 
complexes were only recently identified. WPP domain-
interacting proteins at the outer NE have little homology to 
known opisthokont KASH proteins, but form complexes with 
SUN proteins at the inner NE that have plant-specific properties 
and functions. In this review, we will address the importance 
of LINC complex-regulated processes, describe the plant NE 
bridging complexes and compare them to opisthokont LINC 
complexes.
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pombe Sad1, a component of the spindle pole body.9 This domain 
was subsequently found to interact with a C-terminal domain 
conserved in a series of ONM proteins including Klarsicht, 
ANC-1, and Syne (also known as Nesprin).10 Therefore, the two 
interacting domains were named Sad1/UNC-84 (SUN) domain9 
and Klarsicht/ANC-1/Syne homology (KASH) domain,10 
respectively. SUN proteins typically locate at the INM with their 
C-terminal SUN domain positioned in the perinuclear space 
(PNS) (fig. 1 and see below). KASH proteins are tail-anchored 
proteins at the ONM harboring a C-terminal KASH domain, 
which contains a short PNS tail (~30 amino acids) typically 
ending with a PPPX (X represents any amino acid) motif that 
is essential for interacting with the SUN domain. The SUN-
KASH complexes bridge their binding partners across the NE 
(fig. 1). In the nucleoplasm, the N-termini of many SUN pro-
teins interact directly or indirectly with nuclear lamins, which 
are intermediate filament proteins located underneath the INM 
and are considered components of the nucleoskeleton.11 At the 
cytoplasmic side, KASH proteins are linked to motor proteins, 
intermediate filaments, microtubules, or F-actin.4-7,12

Mammalian SUN1 and SUN2 interact with lamin A, and 
the NE localization of SUN2 depends on lamin A.13,14 SUN1 
and SUN2 interact with the mammalian KASH proteins 
nesprin-1 and nesprin-2 at the NE.4,15,16 These two KASH pro-
teins consist of N-terminal F-actin-binding calponin homology 
domains, a long stalk domain composed of spectrin repeats, and 
a C-terminal KASH domain.4,16 The spectrin repeats each assem-
ble into a three-helix bundle, which makes the protein flexible in 
length and may assist in buffering against mechanical stress.17 
Nesprin-1 and -2 interact with F-actin and connect the INM 
lamins through SUN1 and SUN2 (fig. 1a).4,18 These LINC 
complexes are responsible for anchoring the synaptic nuclei at the 
mouse neuromuscular junction.18 Nesprin-1 and -2 also link the 
centrosome to the nucleus through interactions with the dynein–
dynactin complex (fig. 1a).19 This connection is essential for 
interkinetic nuclear migration and nucleokinesis in mice.19

In Drosophila, the localization of Klarsicht at the nuclear 
periphery depends on a type B lamin and a SUN protein, kla-
roid.20 Klaroid also forms nuclear aggregates in transgenic flies 
expressing a mutated lamin C that lacks the first 42 amino 
acids,21 suggesting that klaroid might be associated with lamin C.  
Klarsicht is connected to microtubules and is responsible for the 
apical nuclear migration during photoreceptor formation.20,22  
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similar chromosomal bouquet mediated by a SUN1-KASH5 
complex.7 table 1 provides an overview of known SUN-KASH 
pairs from different organisms and their known or proposed 
functions.

The structure of the mammalian SUN-KASH complex was 
recently resolved.39,40 In this complex, three KASH domains 
are anchored in one cloverleaf-like trimer of SUN domains. 
The SUN domain protomer has several functional domains: 
an α-helical stalk, a compact β-sandwich core, a cation-loop, 
and a protruding anti-parallel β-sheet named the KASH-lid  
(fig. 2). The α-helix serves as an extension of the trimeric 
coiled-coil domain of SUN proteins, which facilitates the 
trimerization. The trimer is further stabilized by a large inter-
acting surface on the β-sandwich core and the hydrogen bonds 
between the α-helix of one protomer to the β-sandwich of the 
adjacent protomer. The KASH domain is clamped between the 
KASH lid of one protomer and the β-sandwich core of the adja-
cent protomer. Without binding the KASH domain, the KASH-
lid conformation is rather random.40 The very C-terminal 
“PPPX” motif is positioned in a KASH pocket formed by S641, 
Y703, Y707, H628 and the cation-loop (Q593-C601), which 
explains why these four amino acids are critical for SUN-KASH 
interactions.40

Nuclear Positioning in Plants

Nuclear positioning events are involved in considerable aspects of 
the plant life cycle. The most obvious example of nuclear move-
ment is pollen tube growth, during which sperm cells and the 
vegetative nucleus migrate over long distances toward the tip 
of the growing pollen tube (for a recent review, see ref. 41). In 

A similar nuclear migration process in mouse cone photoreceptor 
development is regulated by SUN1, but the responsible KASH 
proteins and the involved elements of the cytoskeleton are 
unknown.23 The localization at the nuclear periphery of another 
KASH protein, MSP-300 also depends on klaroid.24 MSP-300 
is an ortholog of mammalian nesprin-1 and -2. Although its 
role in nuclear anchorage was previously unclear,24-26 a recent 
study revealed that MSP-300 interacts with D-Titin/Sallimus 
and anchors mitochondria and endoplasmic reticulum (ER) 
to the striated muscle Z-discs.27 It also cooperatively func-
tions with Klarsicht to promote even nuclear spacing in striated 
muscle.27 In C. elegans, UNC-84 co-localizes with Ce-lamin at 
the NE and its localization depends on Ce-lamin.28 UNC-84 
recruits the KASH proteins UNC-83 and ANC-1 to the NE  
(fig. 1a).10,29 UNC-83 in turn targets kinesin-1 and/or dynein 
to the nuclear periphery, and the force provided by the motor 
proteins drives the nuclear migration in C. elegans hypodermal P 
cells and embryonic hypodermal cells.30-32 ANC-1 interacts with 
F-actin and is required for nuclear anchorage in the adult C. 
elegans syncytial hypodermis.10

SUN-KASH complexes can also link chromosomes to the 
cytoskeleton. In Schizosaccharomyces pombe, centromeres are 
tethered to the SUN protein Sad1 through Csi1 (fig. 1b).33 
Loss of Sad1 or Csi1 leads to high-frequency centromere clus-
tering defects.33 At meiotic prophase, telomeres are tethered to 
Sad1 through Bqt1, Bqt2 and telomere-associated proteins Taz1 
and Rap1.6 Telomeres are further linked to dynein motors by the 
KASH protein Kms1 and Kms2 (fig. 1b).34-37 This results in 
telomere clustering and later in nuclear oscillation between the 
cell poles, which facilitates homologous paring and recombina-
tion.38 In mammals, a recent study revealed the formation of a 

Figure 1. Nuclear envelope bridging complexes in different organisms. Since SUN domains are relatively conserved across species, all SUN proteins are 
drawn as trimers according to the evidence provided for HsSUN2.39,40 For simplicity, all KASH proteins are drawn as monomers. See text for details.
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Table 1. Known SUN-KASH pairs from different organisms, their cytoplasmic partners, and their known or proposed functions

SUN KASH Cytoplasmic partner: function Reference

Mammalian

SUN1/2 Nesprin-1 F-actin: anchoring the synaptic nuclei under the mouse neuromuscular junction.18

Dynein/dynactin complex: connecting the nucleus to centrosome for interkinetic nuclear migration and  
nucleokinesis.19

SUN1/2 Nesprin-2 F-actin: anchoring the synaptic nuclei under the mouse neuromuscular junction.18

Dynein/dynactin complex and kinesin: connecting the nucleus to centrosome for interkinetic nuclear migration and 
nucleokinesis.19

SUN1/2 Nesprin-3 Plectin, BPAG1, or MACF: connecting the nucleus to intermediate filaments or microtubules which stabilizes the  
anchorage of the nucleus and maintains the structure/shape of the nucleus (reviewed in ref. 12).

Maybe SUN1/2 Nesprin-4 Kinesin-1: predicted to promote nuclear migration toward the base of the secretory epithelial cells.82

SUN1/2 KASH5 Dynein/dynactin complex: telomere movement during meiosis.7

SUN3 Nesprin-1 Proposed to be kinesin II, dynein/dynactin, or F-actin: probably links the nucleus to posterior manchette during sperm 
head formation.83

SUN1η Nesprin-3 Proposed to be plectin: proposed to be a non-NE complex anchoring acrosome to the anterior actin filaments during 
sperm head formation.83

SPAG4 Unknown Unknown: Testis-specific, non-NE localized, function unknown.84

SPAG4L/4L-2 Unknown Unknown: restricted to the apical nuclear region of round spermatids facing the acrosomic vesicle, and probably 
involved in linkage of the acrosomic vesicle to the spermatid nucleus and in acrosome biogenesis.85

Drosophila

Klaroid MSP-300 F-actin: nuclear anchoring during Drosophila oogenesis.26

Unknown MSP-300 D-Titin/Sallimus: anchoring mitochondria and endoplasmic reticulum to the striated muscle Z-discs.27 Unknown: 
anchoring microtubules to the NE in striated muscle.27 Unknown: Anchoring the nuclei to myofibril compartment in  

striated muscle.27

Klaroid Klarsicht Proposed to be microtubule motors: nuclear migration during eye development.20,22

Unknown Klarsicht Unknown: anchoring microtubules to the NE in striated muscle.27 Unknown: promoting even myonuclear spacing in 
both striated muscle and nonstriated myotubes.27

SPAG4/
Giacomo

Unknown yuri and dynein/dynactin: involved in centriolar-nuclear attachment during spermatogenesis.86

C. elegans

UNC-84 ANC-1 F-actin: nuclear anchorage in the adult C. elegans syncytial hypodermis.10

UNC-84 UNC-83 Kinesin-1 and dynein: nuclear migration in embryonic C. elegans hypodermal cells.30,31

SUN-1/matefin ZyG-12 Dynein and ZyG-12A: linkage between the centrosome and nucleus,87 meiotic chromosome paring and synapsis,88,89 
and nuclear positioning within the syncytial gonad.90

SUN-1/matefin KDP-1 Unknown: cell-cycle progression.67

S. pombe

Sad1 Kms1 and 
Kms2

Dynein and centrosomes: meiotic chromosome pairing and synapsis6,34-37

S. cerevisiae

Mps3 Unknown Unknown: Mps3 is involved in spindle pole body insertion into the NE and NE homeostasis;91 it interacts with Mps2 to 
connect the spindle pole body to the NE and functions in spindle pole body duplication.92

Mps3 Csm4 Probably F-actin: meiotic telomeres are tethered to Mps3 at the NE by Ndj1 and further connected to the cytoskeleton 
(perhaps actins) by Csm4.93-95

Mps3 Unknown Unknown: Mitotic telomeres are tethered to Mps3 at the NE by Sir4 and the telomere clustering is mediated by two 
Mps3 associated proteins,96 Ebp2 and Rrs1.97

Dictyostelium

SUN-1 Unknown Unknown: SUN-1 connects the centrosome to chromatin and ensures genome stability98

Unknown Interaptin F-actin: Function unknown99

Arabidopsis

AtSUN1/2 AtWIP1/2/3 RanGAP: anchoring RanGAP to the NE.8

AtSUN1/2 AtWIP1/2/3 Unknown: nuclear shape determination.8
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Plant SUN Proteins

Two types of SUN protein have been identified in plant genomes: 
the canonical C-terminal SUN domain (CCSD) type and the 
plant-prevalent mid-SUN 3 transmembrane (PM3) type.59,60 The 
CCSD type has a SUN domain at the C-terminus, while the 
signature of the PM3 type is a centrally positioned SUN domain 
followed by a highly conserved domain of unknown function.60 
The PM3 type was first discovered in maize, but is also present in 
other plant species, as well as in opisthokonts.60 PM3-type SUN 
proteins have not yet been functionally investigated. To date, all 
well-studied SUN proteins belong to the CCSD type, and there-
fore, only plant CCSD-type SUN proteins will be discussed in 
detail here.

The Arabidopsis genome encodes two CCSD-type SUN pro-
teins—AtSUN1 and AtSUN2.59,61 They share a similar domain 
organization with non-plant SUN proteins: an N-terminal 
domain with a nuclear localization signal (NLS), a trans-
membrane domain, a coiled-coil domain, and a SUN domain. 
Deleting the N-terminal domain, the NLS, or the coiled-coil 
domain of AtSUN1 or AtSUN2 affects their NE localization, 
suggesting that these domains are involved in NE targeting and 
integration. Both genes are expressed ubiquitously in various tis-
sues, including roots, hypocotyl, cotyledons, and leaves. As ana-
lyzed by fluorescence resonance energy transfer assays, AtSUN1 
and AtSUN2 can form homo- or hetero-complexes,59 perhaps 
similar to the mammalian SUN protein trimers.

This is supported by the predicted 3D structure of the 
AtSUN1 SUN domain derived from comparative modeling with 
the SUN domain of Homo sapiens SUN2 (HsSUN2) as a tem-
plate (fig. 2a). According to the HsSUN2 model, the SUN2 tri-
mer harbors three binding site for the KASH domain, such that 
the SUN-KASH complex is a hexamer.40 AtSUN1 likely harbors 
the same binding configuration, because the essential structures 
and amino acids involved in KASH binding are mostly conserved 
(figs. 2b and 3): (1) the KASH-binding pocket is very well-con-
served; (2) the cation loop is conserved, especially within plant 
SUN domains; (3) although the residues of the KASH lid are not 
conserved, a corresponding fragment is present in all plant SUN 
domains (fig. 3). In contrast, the residues that are dispensable for 
SUN-KASH interaction—residue C563 of HsSUN2 that forms 
a disulfide bond with a cysteine in the KASH domain and residue 
N636 of HsSUN2, the N-glycosylation site—are not conserved 
in plant SUN domains (fig. 3).

plant onm sun-binding proteins. Although the sequences 
and the KASH binding features are conserved between mamma-
lian and plant SUN domains, plant genomes do not encode any 
homologs of opisthokont KASH proteins.

WPP domain-interacting proteins (WIPs) are plant tail-
anchored ONM proteins that contain a cytoplasmic coiled-coil 
domain, a transmembrane domain, and a PNS tail terminated 
in a conserved “VPT” motif. WIPs are plant-specific proteins 
and Arabidopsis has three homologs—AtWIP1, AtWIP2, and 
AtWIP3. They are redundantly involved in anchoring the Ran 
GTPase activating protein (RanGAP) to the NE. This anchorage is 
achieved by the interaction between the N-terminal plant-specific 

growing root hairs the nucleus is positioned at a relatively fixed 
distance from the apex. Interrupting this nuclear positioning 
by depolymerizing F-actin or trapping the nucleus with a laser 
beam prohibits root hair growth.42,43 Similarly, in Arabidopsis tri-
chomes—branched, single-cell leaf hairs—the nucleus migrates 
to a position close to the first branch point.44

Asymmetric cell divisions play an important role in plant 
development. The nucleus has to be positioned at the future 
division site during this process. During lateral root forma-
tion, the nuclei of two neighboring lateral root founder cells 
migrate toward the common cell boundary. This is followed 
by asymmetric cell divisions leading to two small adjacent cells 
and two larger peripheral cells.45,46 During pollen mitosis I, the 
nucleus in microspores migrates to allow asymmetric division 
to produce a large vegetative cell and a small generative cell. 
Arabidopsis microtublue organization 1 (MOR1; also known 
as GEM1) and its tobacco ortholog tobacco microtubule bun-
dling polyeptide of 200 kDa (TMBP200) are required for this 
process, and mutations in these proteins lead to defects in pol-
len production.47-49 Guard cell formation also involves several 
steps of asymmetric cell division (reviewed in refs. 50 and 51). 
In monocots, the guard mother cells arise from one asymmet-
ric division and then divide symmetrically to produce guard 
cell pairs. Subsequently, the adjacent epidermal cells divide 
asymmetrically to generate subsidiary cells. In dicots, a proto-
dermal cell divides asymmetrically to produce a meristemoid, 
which is capable of generating either epidermal pavement cells  
or guard mother cells.

Nuclear movement is also actively involved in plant-microbe 
interactions. When arbuscular mycorrhizal fungi penetrate host 
root cells, the host cell nucleus rapidly positions itself beneath 
the appressorium contact site and promotes cytoskeleton and ER 
rearrangements.52,53 The nucleus then migrates away from the 
contact site, accompanied by a formation of a column comprised 
of cytoskeleton and ER.52,53 This newly formed structure strictly 
defines the future intracellular path of hyphal penetration and 
is called the pre-penetration apparatus.52,53 However, in case of a 
pathogenic fungus, the host cell nucleus stays at the appressorium 
contact site accompanied by cell wall thickening and papilla for-
mation that blocks the fungal penetration.54

Plant Meiotic Telomere Movement

Similar to mammalian telomere organization, plant telomeres are 
also attached to the NE during meiosis.55,56 During maize (Zea 
mays L.) meiotic prophase I, starting at the end of leptotene, telo-
meres begin to cluster at the nuclear periphery to form a bou-
quet.57 This process persists through zygotene and ends at early 
pachytene when telomeres start to disperse at the nuclear periph-
ery.57 In Arabidopsis, telomeres move to the nuclear periphery 
and form a loose cluster, perhaps a temporary bouquet.58

Despite the importance of nuclear positioning and chro-
mosome movement during the plant life cycle, little is known 
about the molecular players involved. The recent identification of 
NE-bridging complexes in plants has now provided tools to begin 
investigating the underlying molecular mechanisms.
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nuclear pore at the cytoplasmic surface.65 Both metazoan and plant 
RanGAP is associated with the outer NE, but the mechanisms 
differ. The RanGAP-WIP-SUN complex appears to be specific 
for plants. Mammalian nuclear pore-associated RanGAP1 is in a 
complex containing the SUMO E3-ligase nucleoporin RanBP2, 
SUMOylated RanGAP1 and the E2 SUMO-conjugating enzyme 
UBC9.66 The finding that plants have recruited an NE-bridging 
complex to anchor RanGAP to the NE suggests that there may 
be additional functions for such complexes beyond linking the 
nucleus and the cytoskeleton. Thus, novel, cytoskeleton-unrelated 
binding partners might also exist for opisthokont KASH proteins. 
One such KASH protein candidate might be C. elegans KDP-1, 
which functions in cell cycle progression from late S to M phase, 
and for which a cytoplasmic partner is currently unknown.67

Function of the AtSUN-AtWIP Complex in Nuclear 
Shape Determination

It is possible that WIPs additionally interact with motor pro-
teins or the cytoskeleton. However, neither the wip1-1 wip2-1 

WPP domain of RanGAP and the coiled-
coil domain of WIPs. A combination of 
immunofluorescence and immunogold-
labeling experiments showed that WIPs 
are associated with the ONM.62,63

A combination of co-immunopre-
cipitation and fluorescence recovery 
after photobleaching experiments dem-
onstrated that AtWIP1, AtWIP2, and 
AtWIP3 interact with AtSUN1 and 
AtSUN2 at the plant NE.8 The PNS tail 
of AtWIP1, especially the “VPT” motif, 
is required for the interaction, similar 
to the interactions between mammalian 
Nesprins and SUNs.4,16,64 Surprisingly, 
the PNS tail of WIP1 is only 9 amino 
acids long. The PNS tail of Homo sapiens 
Nesprin-2 is 30 amino acids long, and its 
C-terminal fragment of 14 amino acids 
is the shortest one able to bind the SUN 
domain.40 The ability of Arabidopsis 
SUN proteins to bind a very short PNS 
tail might be connected to the presence of 
a stretch of additional conserved residues 
in plant SUN domains,8 however, further 
work is required to understand the exact 
biochemical nature of the unusual plant 
NE-bridging complex.

Function of the AtSUN-AtWIP Complex in RanGAP 
NE Anchoring

The NE localization of AtWIP1 is reduced in a sun1-knockout 
sun2-knockdown (sun1-KO sun2-KD) mutant, suggesting that the 
localization of AtWIPs depends on AtSUNs, analogous to the 
animal KASH proteins.8 Consistent with these findings, the NE 
localization of AtRanGAP1 is also reduced in undifferentiated 
root cells of the sun1-KO sun2-KD mutant, indicating that plant 
SUN proteins play a role in RanGAP-NE association by forming 
a RanGAP-WIP-SUN complex. The existence of this complex is 
supported by co-immunoprecipitation data.8

AtRanGAP1 is currently the only confirmed cytoplasmic part-
ner of an NE-bridging complex that does not appear to be associ-
ated with elements of the cytoskeleton. RanGAP is the GTPase 
activating protein for the small GTPase Ran. RanGTP hydrolysis 
is an important step in nucleocytoplasmic trafficking and implied 
in the release of cargo from export receptors after exiting from the 

Figure 2. Computed three-dimensional model of the SUN domain of AtSUN1. (A) The S251-D453 
fragment of AtSUN1 was modeled using MODELER.79 The SUN domain of HsSUN2 was used as a 
template (PDB: 4FI9). Three models were computed and the one with the lowest zDOPE score is 
shown. Magenta, model of the AtSUN1 SUN domain. Cyan, SUN domain of HsSUN2. Gray, Nesprin-2 
KASH domain in the HsSUN2-KASH complex. (B) Computed surface of the binding pocket for the 
KASH C-terminus in AtSUN1. Red, V301-N318 fragment of AtSUN1 corresponding to the KASH lid of 
HsSUN2 (y567-S587). Orange, S324-C333 fragment of AtSUN1, corresponding to the cation-loop of 
HsSUN2 (Q593-C601). Purple, residue H360, S371, H439, and y443 of AtSUN1, corresponding to H628, 
S641, y703, y707 of HsSUN2, respectively. Images were generated using UCSF Chimera package80 
and POV-Ray (http://www.povray.org/).

Figure 3 (See opposite page). Amino acid sequence alignment of plant SUN domains with the SUN domain of HsSUN2. Alignment was performed 
using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) with default settings, except that the output sequences were kept as input order. Image 
was generated using JalView81 and Clustalx color. GI, NCBI GenInfo identifier. Black frames in the alignment are numbered at the top. Frame 1 indicates 
C563 in HsSUN2, which forms a disulfide bond with Homo sapiens Nesprin-2 C6862. This disulfide bond is dispensable for SUN-KASH interaction, and in 
plant SUN domains this position is instead a conserved D or E. Frame 2 indicates the KASH-lid in HsSUN2, however, the sequences have low similarity 
between HsSUN2 and plant SUN proteins. Frame 3 represents the cation loop in HsSUN2. This cation loop and residues indicated by frame 4, 6, 7, 8 
(correspond to H628, S641, y703, and y707 of HsSUN2, respectively) form the pocket holding the KASH C-terminus and are well conserved in plant SUN 
domains. Frame 5 represents N636 of HsSUN2, the N-glycosylation site. N-glycosylation of HsSUN2 is dispensable for KASH binding, and this position is 
a conserved D in plant SUN domains.
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Arabidopsis root hair cells, trichomes, and some of the leaf epi-
dermal cells, the nucleus is spindle-shaped.8 Especially in root 
hair cells, the super-elongated nucleus resembles a “pod” with 
two thin tails attached to its poles.8 In the wip1-1 wip2-1 wip3-1 

wip3-1 nor the sun1-KO sun2-KD mutant has obvious defects 
in nuclear positioning or plant development.8,61 The only phe-
notype observed in these mutants was a reduced nuclear polarity 
in root hairs, leaf epidermal cells, and trichomes.8,61 In wild-type 

Figure 3. For figure legend, see page 210.
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mitotic ER to chromatin in telophase and might mediate NE 
reassembly during mitosis.76 A similar mechanism might also 
exist in plants. In Arabidopsis, AtSUN1 diffuses to the ER after 
NE breakdown and is mainly located at the distal side of the 
separated chromosomes throughout anaphase.61 At telophase, 
an enriched AtSUN1 signal starts to enclose the chromosomes 
from the distal surface to the proximal surface. At the same time, 
the signal at the ER becomes gradually reduced, indicating the 
translocation of AtSUN1 to the newly formed NE.61 Studies of 
AtSUN1 and AtSUN2 in BY-2 cells showed similar results.77 
Additional work using BY-2 cells also showed that AtSUN1 and 
AtSUN2 are associated with membranes around the spindle and 
close to the chromosomes.77

During plant meiotic prophase I, the telomere bouquet 
associated with the NE has roles in interhomolog pairing, syn-
apsis, and homologous recombination. Evidence for a possible 
involvement of plant SUN proteins in this process comes from 
the maize desynaptic (dy) mutant.78 This mutant is defective in 
chromosome synapsis, recombination, telomere-NE tethering, 
and chromosome segregation. Linkage mapping combined with 
a candidate-gene approach make it likely that a splice variant of 
maize SUN3 is responsible for this phenotype.78

Perspectives

Our understanding of the nature and role of plant NE proteins 
has just begun. Compared with the nuclear pore proteins, NE 
proteins appear to be even less conserved between plants and ani-
mals. This suggests that the hunt for plant NE proteins largely 
will be by de novo identification, rather than homology searches. 
It is exciting to learn that NE-bridging complexes are conserved 
in plants and that they perform plant-specific functions through 
plant-specific ONM partners. A cornucopia of new questions fol-
lows from these findings: How is the SUN-WIP complex involved 
in the developmental changes in nuclear morphology? Are there 
additional plant NE-bridging complexes and are they connected 
to the cytoskeleton? Are they involved in nuclear migration? Do 
plant SUN proteins interact with other IMN proteins and do 
they interact with a plant lamina? How are plant SUN proteins 
involved in chromosomal positioning? Perhaps the answers to 
these questions will help resolve a more general enigma: why is 
the complement of NE proteins so different in plants? And what 
does this tell us about the separate evolution of NE functions in 
plants and opisthokonts? A rapid resolution of these questions is 
unlikely, but their answers will certainly lead to a broader, more 
comparative understanding of the physical interaction of the 
nucleus with its cellular environment.
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mutant or the sun1-KO sun2-KD mutant, this spindle shape is 
lost, indicating that both WIP and SUN are required for main-
taining an elongated nuclear structure in these cell types.8 It is 
possible that an unknown factor anchored by the SUN-WIP 
complex regulates the nuclear shape in the Arabidopsis epidermis 
(fig. 1C, indicated by the oval with a question mark).

Intriguingly, loss-of-function mutants of two Arabidopsis 
nuclear long coiled-coil proteins, LITTLE NUCLEI 1 and 2 
(LINC1 and LINC2; recently renamed to CROWDED NUCLEI 
1[CRWN1] and 2 [CRWN2] to avoid confusion with the LINC 
complex), also lead to the loss of nuclear elongation, in addition 
to a reduced nuclear size.68 Plant genomes do not encode homo-
logs of animal lamin genes. The Daucus carota L. (carrot) nuclear 
matrix constituent protein 1 (NMCP1) and its Arabidopsis homo-
logs—CRWN1, CRWN2, CRWN3 and CRWN4—have been 
proposed as putative plant counterparts of animal lamins. They 
are conserved in many plant species and contain long coiled-coil 
domains similar to lamins, though at almost twice the size, and 
NMCP1 and CRWN1 are located at the nuclear periphery.68,69 In 
addition to the nuclear shape change, the crwn1-1 crwn2-1 double 
mutant has a significantly reduced nuclear volume, fewer chromo-
centers, and a dwarf plant phenotype.68

Nuclear shape change caused by mutations in lamin genes was 
observed in a series of human diseases called laminopathies.70 
One such disease is Hutchinson–Gilford progeria syndrome 
(HGPS), which is linked to point mutations in the human lamin 
A gene (Lmna). Patients suffer from a series of premature-aging 
symptoms—among others, loss of hair, restrictive joint mobility, 
and cardiovascular disease. One of the hallmarks of HGPS cells 
is the occurrence of blebbed and lobulated nuclei.71 This defect of 
nuclear shape is reversely proportional to the amount of nesprin-2 
at the NE,72 and mutation or silencing of nesprin-2 also causes 
blebbed nuclei in both mouse and human cells.73 Unexpectedly, 
the mutation of SUN1 in Lmna-/- mice did not accelerate the 
pathological phenotypes, but instead ameliorated them and 
corrected the nuclear aberrancies in fibroblasts.74 In light of the 
SUN1 overaccumulation observed in Lmna-/- cells, this implies 
SUN1 overabundance as a pathogenic event in HGPS and a trig-
ger of nuclear shape aberrancies.

The involvement of both lamins and lamin-like proteins and 
SUN-KASH complexes in nuclear shape in both plants and 
mammals and their connection to human disease make it worth-
while to further investigate the biological relevance of nuclear 
morphology at the cellular and organismal level.

Possible Function of Plant SUN Proteins in Mitosis 
and Meiosis

Mammalian SUN1 is associated with NPCs and interacts with 
lamins.75 It is suggested that this kind of INM protein links 
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